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THEORETICAL AND SUBJECTIVE BIT ASSIGNMENTS IN
TRANSFORM PICTURE PROCESSING
Harry W, Jones, Jr.*

Ames Research Center

SUMMARY

It is shown that all combinations of symmetrical input distributions with
difference distortion measures give a bit assignment rule identical to the
well-known rule for a Gaussian input distribution with mean-square error. Pub-
lished work is examined to show that the bit assignment rule is useful for
transforms of full pictures, but subjective bit assignments for transform pic-
ture coding using small block sizes are significantlv different from the
theoretical bit assignment rule. An intuitive explanation is based on subjec-
tive design experience, and a subjectively obtained bit assignment rule is
given,

INTRODICTION

In transform picture coding, a picture or smaller subpictures are
linearly transformed and the resulting transform coefficients are quantized
and transmitted. If the picture elements are highly correlated, most of the
transform domain energy is concentrated in a few transform vectors that repre-
sent averages of adjacent picture elements. The transmitted information is
used to specify these high-energy vector coefficients, and the resulting trans-
mission rate for a given distortion is closer to the theoretical bound than the
original untransformed picture data rate. Although the Karhunen-Loeve or
eigenvalue transformation is best, the computationally simpler Fourier, cosine,
or Hadamard transforms have been found useful (refs. 1 to 3).

The bit assignment and quantizers that give minimum mean-square error for
a set of independent Gaussian random variables are well known (refs, 4 and 5).
The assumptions of Gaussian distribution and mean-square-error criterion are
not always correct for the transform coefficients of images, and new quantizers
have been found for more appropriate distributions and more general error cri-
teria (refs. 6 and 7). It will be shown that all combinations of symmetrical
input distribution with difference distortion measures give a bit assignment
algorithm identical to the well-known algorithm for a Gaussian input distribu-
tion and mean-square-error criterion, Published work is examined to show that,
although the bit assignment algorithm is useful for transforms of full pic-
tures, subjectively designed bit assignments for pictures transformed using
small subpicture blocks differ significantly from the theoretical algorithm.
Finally, an intuitive explanation of this discrepancy is given, based on a
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subjective design of a Hadamard transform video compressor (ref. 8), and a
subjectively obtained bit assignment rule will be stated.

THEORETICAL BIT ASSIGNMENTS

Huang and Schultheiss (ref. 5) determined the optimum bit assignment using
the rate distortion function for Gaussian input and mean-square error. If we
assume that the distortion depends on the difference between the exact trans-
form coefficient (xj) and its corresponding representative value (y;), the
lower bound of the rate distortion function is well known (refs. 9 and 10).

For input distribution p(x) and distortion
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the rate distortion function is bounded as follows:

1/q
R(D) > H[p(x)] - 1og2D1/q - 10g2[%(qe) Fﬁl/q)]
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If we assume that the transform coefficients (x;) have the same distribu-
tion, differing only in scale or variance, we can show that the entropies of
the input distributions H[p(x)] are identical except for a function of vari-
ance. Suppose that k(|y|) is a probability density having unit variance;
k(|y|) is obviously zero mean and symmetrical about zero., If
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where o 1is a scale parameter, then
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Therefore, p(a,x) is also a zero mean, symmetrical probability density. The
variance of p(o,x) is a function of the scale parameter:
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The last step follows from the assumption that k(|y|)has unit variance. The
entropy of the distribution is
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The entropies of a family of input distributions differing in scale are identi-
cal except for a function of the scale or variance.

The lower bound on the rate distortion function is then

1/q
R(D) > logpo - H[Kk(]y[)] - logp/9 - 10g2[?ﬁqe) - F(l/q{}

For any fixed symmetrical input distribution and for any fixed difference dis-
tortion measure,

R(D) > log, —%;a
D

where K is a constant determined by the input distribution and distortion
measure. In certain cases, such as the Gaussian distribution with mean-square
error or the two-sided exponential distribution with magnitude error, the rate-
distortion function is equal to this lower bound (ref. 9, pp. 95 and 99). The
parameters and performance of the optimum quantizers have been determined from
the Gaussian, two-sided exponential, and gamma input distributions and for the
magnitude and mean-square-error criteria (refs. 4, 6, and 7). The resulting
rate distortion performance curves are reasonably close to the theoretical
rate distortion curves found above (ref. 7). The two-sided exponential and
Gaussian densities are similar to experimental distributions of transform
coefficient distributions.

For a given theoretical or empirical rate distortion curve, the optimum
bit assignment is found after Huang and Schultheiss (ref. 5, p. 293). For N
variables, the rate distortion function is

0.
_ 1
b, = R(D;) = logpK 75
i

where K 1is a constant depending on the input distribution and distortion
measure. For an average rate A,



The total distortion is
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To minimize distortion under the average rate constraint,
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Since this quantity is the distortion for the ith variable, all variables
have equal distortion in the optimum bit assignment:
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or

2
bi = 1.66 loglooi + C

for constant C. The theoretical bit assignment has the same dependence on
variance, and no dependence on the actual distribution or distortion measure,
for all combinations of a scaled symmetrical input distribution with a differ-
ence distortion measure. Furthermore, since actual quantizer rate distortion
performance curves have a slope similar to the slope of the theoretical bound,
sometimes differing only by a constant (refs. 4, 7, and 11), the actual quan-
tizers use a very similar bit assignment rule., Note that variables of small
variance are not transmitted (bi = 0) when the resulting distortion is less
than the equal distortion D defined above.
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Davisson (ref. 3) indicated that objections have been raised to the use of
the standard rate distortion function because the source densities are not
Gaussian and because mean-square error is not appropriate. The result found
here eliminates these objections, at least in bit assignment, for a wide range
of source densities and distortion measures. The optimum quantizers are

derived directly from the correct-source density and distortion measure (refs.
4, 6, and 7).

SUBJECTIVE BIT ASSIGNMENTS

Although it is generally accepted that rate distortion theory is not
useful in image coding, Mannos and Sakrison (ref. 12) performed an experiment
that significantly increases the usefulness of the theory. Their procedure
was as follows:

(1) A nonlinear weighting was performed on the picture samples.

(2) A smoothed, isotropic power spectral density was estimated.

(3) The spectral density and rate-distortion theory were used to define
the equal maximum distortion in the spectral domain,

(4) The fast Fourier transform was taken of a full 512 by 512 picture.

(5) Only the coefficients that exceeded the minimum distortion were trans-
mitted, with Gaussian noise added to give the equal minimum distortion.

(6) The inverse transform and nonlinear operation were applied.

{(7) The picture was subjectively evaluated.

Although added Gaussian noise, which corresponds to an ideal quantizer, was
used rather than an actual quantizer, the above steps conform to the bit assign-
ment theory. The estimated power density and the actual transform coefficients
were weighted using different functions and the results evaluated subjectively.
Mannos and Sakrison's best curve of contrast sensitivity versus spatial fre-
quency has a peak at 8 cycles/degree and decreases rapidly on either side of
the peak, which agrees very well with direct measurements. It follows that,

if the coefficient variances are weighted according to spatial frequency or
transform vector visibility, the bit assignment theory should produce good
subjective results,

For correlated picture elements, the coefficient power decreases as spa-
tial frequency increases. Therefore, weighting according to frequency may be
approximated with weighting according to power. Davisson (ref. 3) considered
the coefficient distortion to be

. 2 2X
. = min(o., Bo,
d1 (01, oy )

The bit assignment is

02
_1 i
by = 7 1ogs —— %t C
mln(ci, Boi )

where C adjusts the total number of bits, as usual. The best results for a
256 x 256 Fourier transform picture at 0.5 bits/sample were obtained for
x=1/3:
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The bit representation for lower powers or higher spatial frequencies is
increased for a fixed total of bits, while the bit representation for high
powers is decreased. At viewing distances three times the picture height, the
picture subtends 19°, and the picture elements occur 256/19 or 13.5/deg. Thus
the spatial components had frequencies from 0,053 for the full picture to V2
(13.5) = 19.0 for a checkerboard of the picture elements. These frequencies
lie largely in the region where contrast sensitivity is increasing with spatial
frequency, so Davisson's bit reassignment agrees with the work of Mannos and

Sakrison.

Landau and Slepian (ref. 1) subjectively quantized 4 x 4 Hadamard trans-
form vectors for 256 x 256 pictures. At a viewing distance three times the
picture height, the spatial frequencies of the 4 x 4 Hadamard blocks vary from
256/19 (1/4)V2 = 4.77 to 256/19 V2 = 19.0 cycles/deg. Landau and Slepian's
bit assignments are shown in figure 1, with several theoretical results based
on their covariance values. All bit assignments total 32 bits, The Shannon
theory bit assignment and the modified assignment of Kurtenbach and Wintz (ref.
13) are similar, but both are quite different from the empirical assignment.
Table I gives estimated spatial frequencies for the Hadamard vectors and shows
the application of Mannos and Sakrison's frequency weighting to the vector
powers. This bit reassignment is slightly closer to Landau and Slepian's
empirical bit assignment. A linear regression on bj versus ¢; for Landau
and Slepian'’s assignment gives a slope of 3,65, with C = 7,10 for 32 bits,
The theoretical and empirical bit assignments differ widely.

Knauer (ref, 14) implemented
real-time video three-dimensional

O LANDAU AND SLEPIAN'S BIT ASSIGNMENT Hadamard transform compression.

o s e The video frames are 512 » 512
ol PRrENARILS samples; 4 x 4 x 4 subpictures
g7t 4 420 10gig 02 +4.85 (WINTZ AND with a time dimension are used.
g 6F 4 3.65 109,002 +7.10 - LINEAR REGRESSION Experimentation with a program-
3 5[ AN SSTONMENT S oW mable quantizer indicated that
o4 Landau and Slepian's compression
@ 3r scheme can be improved very lit-
[ tle, In the 1,1-bit/sample bit
ol v assignment of Knauer's table II,

&8
Hoo Hou Hio Hoz HaoHos H\?(égl_ll'o;IZ Hay HizH3 Haz Hpz Haz Hay the vectors represent ing no tem-
poral change have the same bit
assignments as in Landau and
Slepian, except that the Hyp

Figure 1.- Comparison of theoretical .
vector has seven bits,

and empirical bit assignments,



10 - Habibi and Wintz (ref. 2) encoded
sl four pictures, of 256 x 256 samples,
. if:gsggggﬁﬁfL using Karhunen-Loeve, Fourier, and
e 0 Hadamard transforms in 16 x 16 subpic-
e7q tures. They selected rates of 2.0,
§ 6 1.0, and 0,5 bits/sample and a bit
w5 assignment rule with a slope of 2.0,
- For the Karhunen-Loeve transform,
2 3 they found that subjective quality
@ 2.0 BITS per SAMPLE was "improved slightly by assigning
2 . -
0.5 BITS per 3 more bits to the samples with larger
' SAMPLE §§m V§§ variances and proportionally fewer
o 40 80 120 180 200 240 280 Dits to the samples with the smaller
VECTOR NUMBER variances,'" and found that "the modi-
fied bit allocation also resulted in
Figure 2.- Theoretical and subjec- a slightly smaller mean-square error.,"
tive bit assignments from Habibi Their theoretical and subjective bit
and Wintz—(ref. 2). . assignments for 2,0 and 0,5 bits/sam-

ple are given here in figure 2, and
the reassignment for 1.0 bits is similar. Since the theoretical slope is 2.0,
the slope of 0. versus vector number is determined by the theoretical bit
assignments (table II). The subjective bit assignments then determine the sub-
jective slope. Taking each group of vectors as a data point, linear regres-
sion shows that the subjective slopes are 2.55, 2,59, and 2,68 for the 2, 1,
and 0.5 bit/sample bit assignments. This change of slope is similar to, but
less than, that of Landau and Slepian., Habibi and Wintz report that no reas-
signments that were consistently better for the Fourier and Hadamard trans-
forms were found., The frequency range for 16 x 16 Hadamard blocks of 256 x
256 pictures, viewed at a distance three times the height, varies from 1,19 to
19.0 cycles/deg. Assuming that the Karhunen-Loeve vectors have a similar fre-
quency range, the bit assignment for higher power vectors would be reduced
from the theoretical, as in Davisson's experiment discussed previously, The
subjective bit reassignment is contrary to the indication of subjective fre-
quency weighting.

It is apparent that subjective bit assignments differ significantly from
theoretical bit assignments. The work of Mannos and Sakrison (ref. 12) and
Davisson (ref. 3) indicates that, for transforms of complete 256 x 256 pic-
tures, subjective frequency weighting accounts for the discrepancy. The work
of Landau and Slepian (ref. 1), Knauer (ref. 14), and Habibi and Wintz
(ref. 12), for small subpictures, shows that larger vectors should be assigned
relatively more bits. For small blocks, the reassignment is in excess of, or
in contradiction to, the effect of subjective frequency weighting.

INTUITIVE EXAMINATION OF BIT ASSIGNMENT PROBLEM

The reason that subjective bit assignments differ from theoretical bit
assignments becomes apparent when we consider a subjective compression design
procedure for small block size. The 4 x 4 Hadamard vectors are shown in fre-
quency order in figure 3. If we start with a transformed picture of highest



Hoo quality, all transform coefficients

Hos Hoz Hoz N
have closely spaced representative
[I m l:l] values covering the full possible
range. In the first attempt to reduce

the rate, some vectors are represented

Hio Hyy Hiz Hiz
by a zero value to determine which can
be eliminated with least effect.
Usually, many high-sequency vectors

have such small variance that this

Ha Hzy Haz Has
causes little degradation. Next, the
ranges of the remaining vectors are

reduced until edge blurs appear.

Hso Hsz, Hzp Hzs .
Lastly, representative values are
E E E H thinned out of the retained vector
ranges until granular noise due to the

coarse quantization becomes objection-
able. Each final vector representa-
Figure 3.- Sequency-ordered 4 x 4  tion has sufficient range to adequately
Hadamard basis vectors. reproduce edges and has enough inter-
mediate levels to minimize quantizing
noise, These tests of quality are extremely subjective, but they have some
correlation with mean-square error.

In a picture of high contrast, some of the subpictures will be very light
or very dark, so that the block average transform vector usually has the full
possible range (refs. 1 and 14). Suppose there are high contrast edges in the
picture. Some portions of these edges will coincide with block edges, and will
be reproduced with the full original contrast. Other portions of the same edge
will intersect subpictures, causing transform vector coefficients of extreme
value. These values must be correctly represented or a single edge will have
varying contrast and sharpness. (Edge ghosts also affect the vector elimina-
tion decision, as described by Knauer (ref. 15).) Adequately representing the
edges requires that some of the vector coefficients have wider representative
value ranges and more bits than typical subpictures would need.

The above argument can be quantified if some assumptions are made, For an
N x N subpicture, the Hadamard transform matrix, H, is an N2 x N2 matrix of
+1 elements. The vector coefficient value is found by adding and subtracting
sample values. The H matrix is multiplied by 1/N, so that total power is
equal in the sample and transform domains. If the sample correlation matrix is

xTx, the transform correlation matrix is

Ty - bu i Ly

The powers or variances of the transform vectors are on the diagonal of yTy.
We assume unit variance samples produced by a first-order Markov process with
sample to sample correlation of 0.95, vertically and horizontally (refs. 2 and
3). The equation above defines the transform coefficient variances, which
determine the theoretical bit assignment and give an estimate of the coeffici-
ent range. Quantizers for the Gaussian distribution have a maximum representa-
tive value of about 30 (ref. 4). Average values of the 3¢ point for Hadamard
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vectors and groups of Hadamard vectors of different block size are given in
table III.

We next determine the largest vector coefficients produced by sharp, high-
contrast edges. If the unit variance samples are assumed to have uniform dis-
tributions, the sample range is +/3. Consider a vertical edge dividing a light
(+V/3) region on the left from a dark (-v3) region on the right. The value of
Hpo for a 4 x 4 subpicture (fig. 3) varies from +4/3 for all light samples to
-4/? for all dark samples, since 16(N2) samples are added with the same sign
and divided by a scale factor of (1/4),(1/N). When the transition of the Hy;
vector lines up with the edge, the Hyj coefficient is 4v/3; the value should
be -4/3 for an edge transition of opposite sign. When the edge coincides with
one of the transitions of Hy,, the coefficient is -2/3, and Hy; has the same
extreme edge induced value. The same maximum values occur for horizontal
edges and the corresponding vectors with horizontal transitions, and similar
extreme values can be found for diagonal and skew edges and Hadamard vectors
with both horizontal and vertical transitions. The maximum-edge-induced coef-
ficient values for various block sizes are shown in table III, If the subpic-
ture exactly matched the Hadamard vector patterns, and had maximum light-dark
range, the coefficient value would be NV3, the maximum value for all
coefficients,

For the smaller block sizes shown in the table, the maximum-edge-induced
coefficients of vectors with all vertical or all horizontal transitions (Hy
or HXO) are equal to 9 to 130, while the maximum-edge-induced coefficients of
vectors with both horizontal and vertical transitions are equal to 3 to 5o.
The existence of edges requires a larger extension of range for vectors with
only vertical or horizontal transitions than for vectors with both. For small
block sizes, all samples are highly correlated and the Hyg vector has the
sample distribution, assumed to be uniform and full range. Then the variance
is approximately (V/3N)2/3 = N2 and 30 = 3N.

The Hgg vector should have full range, and if maximum-edge-induced coef-
ficients occur, the Hg; and Hyg should have full range, the Hps, Hps, Hag,
and Hszg should have half range, etc. As shown in table IV, the largest repre-
sentative values in three subjective 4 x 4 Hadamard systems are 20 to 50 per-
cent of the maximum edge coefficients. The edge differences are usually only
from light to dark rather than from white to black. Experimental Hadamard
coefficient distributions are usually exponential, with the number of extreme
values depending on the frequency and sharpness of edges. The observed high-
value coefficients due to edges, though less than the maximum possible, still
require representative values extending to the theoretical 5 or 60 point,

In the design of a real-time hardware Hadamard transform video compressor,
an adaptive system was used (ref. 8). Depending on the vector coefficient mag-
nitudes, 4 x 4 blocks were quantized differently. The most frequently used
(61 percent) bit assignment and quantization was based on a theoretical bit
assignment for a Markov correlation model with 0,95 correlation between hori-
zontally adjacent elements, The second method was used when vector coeffici-
ents exceeded the ranges in the first method, and is quite similar to Landau
and Slepian's design. The third method is used when vector magnitudes exceed



the range of the second method, and provides superior reproduction of sharp,
high-contrast edges. It is apparent that edges, rather than the most typical
subpictures, determined Landau and Slepian's design.,

As block size increases from 2 x 2 to 8 x 8, the maximum-edge-induced
coefficients become smaller compared to the theoretical standard deviation,
For full picture transforms, large-scale edges similarly can cause extreme
coefficient values, but several factors make this possibility relatively unim-
portant., For a full 512 x 512 picture, there is only one Hj; vector. If the
picture is broken into 4 x 4 subpictures, there are 16,384. The observed fre-
quency of large Hg; coefficients for full-picture transforms will be one in
many pictures; for 4 x 4 transforms the observed frequency will be many in one
picture. Most compression systems are tested on only a few pictures, and pos-
sibly full-picture systems would poorly reproduce a picture half black and
half white (i.e., a picture equal to an extreme Hp; vector). A second reason
that edge effects are unimportant in full-picture transforms is that, since
each coefficient describes the full picture, there are no noticeable differ-
ences in edge rendition between regions. A blurred edge is uniformly blurred,
and such blurs are less noticeable because comparison is difficult, Thirdly,
all full-picture vector coefficients are determined using all picture elements
(218), which tends to average local features or edges and make the coefficient
distribution approach the Gaussian, which has relatively fewer extreme values
than the exponential distribution observed for small subpictures.

The subjective bit assignment rule for small block size seems to be:

(1) Quantize the block average coefficient uniformly over the full pos-
sible range, with 6 to 8 bits.

(2) Determine the theoretical bit assignment for the required bit rate,
using measured variances or the theoretical variances for typical pictures.

(3) Add one bit (and extend the representative value range) for vectors
with all vertical or all horizontal transitions.

(4) Use zero bits instead of the theoretical number for the highest
sequency vectors until the number bits is reduced to the required rate.

This rule reproduces Landau and Slepian's bit assignment in figure 1, while
the closest bit assignment based on coefficient variances is a poor approxima-
tion and has no intuitive justification,

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, October 19, 1976
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TABLE T.- FREQUENCY WEIGHTING OF LANDAU AND SLEPIAN'S VARIANCES

Vector |Designation Variagfef' Frequency A(fr)b 1.66 log1002A2+4.81 Bits®
o}

1 Y T Hee TR 1,00 [ 4,777 0.88 ‘ 4.50 6
2 Hoi .098 7.55 .98 2.98 4
3 Hyg .087 7.55 .98 2.90 4
4 Hpo .035 10.67 .93 2,15 3
5 Hs g .038 10.67 .93 2,22 3
6 Hgs .051 13.92 .79 2.20 3
7 Hjig .048 13.92 .79 2.15 3
8 Hy; .034 9.55 .96 2.18 2
9 Hy» .024 12.17 .87 1.78 2
10 Hyq .024 12.17 .87 1.78 2
il Hij .020 15.09 .74 1.43 0
12 H3, .022 15.09 .74 1.49 0
13 Hy»o .019 14,31 77 1.43 N
14 Hy 3 .015 16.88 .65 1.02 0
15 Hj, .016 16.88 .65 1.07 0
16 Hj3s .014 19.09 .54 .71 0

8Landau and Slepian, table I (ref. 1).
bMannos and Sakrison, equation (23) (ref., 12).
CLandau and Slepian, table III (ref. 1).



TABLE IT.- HABIBI-WINTZ THEORETICAL AND EMPIRICAL BIT ASSIGNMENTS®

Theoretical | Subjective | Approximation,
VeCtors | pits, b, bits, b, pprol

ith i ia
2 bits/sample; bia = 2.55(bith/2.0)—0.61

S ——
1-3 7 8 8.32
4-9 6 7 7.04
10-21 5 6 5.77
22-47 4 5 4.49
47-88 3 4 3,22
89-90 3 3 3.22
91-115 2 2 1,94
116-139 2 1 1,94
140-203 1 0 .67
204-256 0 0 -.61

1 bit/sample; bia = ?.SQFbiFh/Z.O)—O.48

|
|
|
|
[
|
|
i
[
[
i
[
[l
|
1
|

1-2 6 7 7.27
3-6 5 6 5.96
7-15 4 5 4,69
16-38 3 4 3.40
39-56 2 3 2.10
57-66 2 2 2.10
67-73 2 1 2,10
74-122 1 0 .81
123-256 0 0 ~-.48
0.5 bit/sample; bia = 2.68(bith/2.0)—0.73
1-2 5 6 5.98
3-6 4 5 4,64 {
7-14 3 4 3.29
15-25 2 3 1,95
26-35 2 2 1.95
36-46 1 1 .61
47-71 1 0 .61
72-256 0 0 -.73

aHabibi and Wintz (ref. 2)



TABLE III,- 30 AND MAXIMUM-EDGE-INDUCED VALUES FOR HADAMARD
TRANSFORM COEFFICIENTS

Vector o Zxz o AxaA | 8x8 N x N
__________________ 3?___M?E§§§mm_ % Maiiﬁiﬁ» »_?é___Mgigﬁzm Maigism
Hoo 5.87 3.46 i1.ﬁi 777777 6.93 |21.64 13.85 NV3
Hgi,Hig .79 3.46 1.86 6.93 4,82 13.85 NV3
Hpo,Ho3,Hpo,H30 | - - .92 3.46 2,23 6.93 | (N/2)VE
Hou-Ho7,Hyg-Hyo | - - - - 1.04 3.46 | (N/D)V3
Hyy .52 .87 .95 1.73 2.37 3.46 | (N/4)V/3
Hyp,Hy3,Hp3,H31 | - - .64 .87 (N/8)V3

TABLE IV.- FRACTION OF RANGE REPRESENTED IN SUBJECTIVE 4 x 4 HADAMARD DESIGNS
AND MAXIMUM-EDGE-INDUCED FRACTION OF RANGE

Fracticn of full range represented

Edge maximum

Landau § [ Knauer (ref. 14) | Jones (ref. 8) value divided
Vectors Slepian (Vectors with no | (Mode 3 for by full range
(ref. 1) | time component) extreme edges) (N V3).
Hyo 0.94 0.99 0.98 1.0
Ho1,Hio .24 .31,0.19 .48,0.23 1.0
Hgo,Ho3,Ho0,Hsg .093 .093,0.074 .23,0,11 0.5
Hqq .069 .090 .11 0.25
Hyo,Hyy .069 .069 0 0.125
0 0 0 0.125-0,063

All others

NASA-Langley, 1977
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